

Overview GV activity in Korea

Direct Validation
Summer 2018 result

PMM history in Korea

►KMA/NASA GPM/PMM joint research (no-cost proposal)

- Approved August 2009
- Collaborating efforts to contribute GPM ground validation
 - Providing Real-time adjusted Radar-AWS rainrate (RAR) data for 11 KMA radar sites
 - Korean QPE data 1 x 1 km, 1-hour resolution
 - Comparisons between IMERG(V05) and Korean QPE (125~129.5E, 34-38N) since Mar 2014 (https://gpm-gv.gsfc.nasa.gov)
- Publishing the GPM ground validation report using KMA observation network
 - Twice a year: Whole year and Summer (Snowfall report using GPROF)

Climatology

During the Summer in Korea

- ► Monthly mean rainfall is 720mm (125mm in June, 290mm in July, 275mm in August) over recent 30 years (1981-2010)
 - Rainy season during the Summer for around 30 days
- ▶ Typically Typhoon active this season including October
 - mean occurrence is 11 (direct impact 2)

<Yearly mean rainfall during JJA, 1973~2018>

<Typhoon occurrence rate by month>

Ground validation over Korea

Black: KMA ground radar

Blue: KMA test-bed

Red: MoLIT ground radar

Digital Forecast System (DFS)

- Provide village scale forecasts every 3-hr up to 3 days since 2008
- Horizontal resolution can be changed from 5 km to 35 km.

[GR reflectivity over DFS coordinates]

GPM DPR (KuPR, KaPR)

- Level 2 Version 05A/B
- Spatial distribution: 5 km
- Near surface rain rate

Summer 2018

- ► Monthly mean rainfall is 720mm (125mm in June, 290mm in July, 275mm in August) over recent 30 years (1981-2010)
 - In 2018, total 587mm (106mm in June, 172mm in July, 282mm in August)
- **▶**Typhoon activity
 - mean occurrence is 11 (direct impact 2)
 - 3 out of 18 typhoon occurred are impact to Korea this year

Number of collocated case for each GR site

Site	RJNI	RPSN	RKWK	RMYN	RGNG	RBRI	RYIT	RBSL	RSBS	RMHS	RSDS
Event	3	3	5	3	2	4	2	4	4	5	5

Reflectivity (Stratiform)

Reflectivity (Convective)

RKWK site

Ground Radar vs GPM Rain rate

Case study (August 28, 2018 10Z)

Weather Chart 08/28/18 09Z

Radar and COMS IR

Forecast rain in Seoul area (50~150mm) and shower in Southern part of S.Korea (200mm~)

- 1 rain influence by trough
- ② stay cold front due to the high pressure on South

Direct comparisons (RKWK)

Version differences

Version differences – cont.

GR rainrate (mm/h)

GR rainrate (mm/h)

GR rainrate (mm/h)

GR rainrate (mm/h)

9th Workshop of International Precipitation Working Group (IPWG-9)

5-9 November 2018
Seoul, South Korea

Objectives of the workshop

- Review the state of the art of rainfall and snowfall/high-latitude precipitation measurement techniques.
- Discuss the application of satellite precipitation products for research and operations.
- Recommend future directions to WMO/CGMS/GEWEX.

Thank you!

jun.park@kma.go.kr

GPM Ground Validation (2015)

GPM Ground Validation (2016)

GPM Ground Validation (2017)

RAR (Radar-AWS Rainrate)

RAR in KMA

- Korea Meteorological Administration (KMA) has developed the adjustment techniques of radar rainfall based on rainrate from rain gauges, Radar-AWS Rainrate(RAR).
- RAR system provides the gauge-adjusted radar rainfall in real time by applying new coefficient 'a' and exponent 'b' in radar reflectivity(Z)-raingauge rainfall(R) relationship that based on window probability matching method every 10 minutes are derived from pairs between radar reflectivity and gauge rainrate.

	Radar	AWS	RAR	
Observation Range	11 radars (All sites : S-band)	642 points in Korea Peninsula	Composition of 11 KMA radars	
Spatial Resolution	1km*1km (240km range)	about 13 km	1241*1761(1 km)	
Time Resolution	10 min	1 min	10 min	
Unit	dBZ	mmhr-1	mmhr -1	

RAR Algorithm

Operative RAR system

- RAR system has some the temporal variation of RAR increases at the beginning and the end stages of rainfall due to artificial errors in rainfall from TRMM-GSP algorithm, and unrealistic discontinuities.
- To improve stability due to QC-process of raingauge rainfall QC for RAR, we developed new raingauge QC program.
- For more robust RAR system, we have newly derived basic two coefficients "a" and "b" at each radar based on the long-term analysis between radar rainfall estimation and raingauge rainfall,
- Furthermore, we used bias correction method to reduce temporal discontinuity of

Sample errors

• RAR system's artificial error due to TRMM-GSP

06:10

Unrealistic discontinuity at the beginning of precipitation

06:10

: default relation

06:20

real-time relation from RAR

Improvement of RAR system

In order to obtain stable RAR rainfield

1. Improvement Rainfall QC procedure

Weather Radar Center-Rain Gauge Process (WRC-RGP, WRC, 2016)

This program provides a list of available raingauges within a certain radius of radar, and calculate accumulated rainfall data according to quality control method*, and time resolution selected by user. WRC-RGP has improved quality control performance for raingauge rainfall, and also reduced computation time for QC-process.

(*Quality Control: Integrity check, Physical limit check, Checking temporal consistency, Climatological Check)

2. Applying Mean Coefficient to default relationship

The new coefficients are calculated only when the number of pairs between radar rainfall estimates and raingauge rainfall are enough. Otherwise, Marshall-Palmer (M-P) Z-R relationship is applied as a default relationship. The use of M-P relationship induces temporal discontinuity of RAR.

In order to obtain stable RAR rainfield, we've calculated the mean Z-R relationship for each radar sites.

(used period: march~october, 2015 and 2016)

3. Error Weighted correcting method to improve temporal stability

The Z-R relationship calculated in real-time is calculated independently every 10 minutes, several discontinuity exists in RAR system. We used bias correction method to reduce temporal discontinuity of rainfields

$$R_{qped} = \frac{rRMSE_2}{rRMSE_1 + rRMSE_2} * R_1 + \frac{rRMSE_1}{rRMSE_1 + rRMSE_2} * R_2$$

 R_{aped} = Error Inverse corrected Rainrate = QPED by Real-time Z-R relation = QPED by Mean Z-R relation $rRMSE_1$ = rRMSE from Real-time Z-R relation $rRMSE_2$ = rRMSE from Mean Z-R relation

Improved RAR

Case of Improved RAR system

Case period: 14 APR 2017 05:40KST~06:30KST

Applying Mean Z-R relation as default relationship and bias correction method on estimating precipitation in real-time, the amount of temporal changing impact in RAR system was relaxed.

- Improved RAR': applying site mean Z-R relation as default relationship
- Improved RAR": applying site mean Z-R relation as default relationship + Error Weighting Corrected

Verification score of Improved RAR

Case period: 14 APR 2017 00:00KST~16:00KST

	Operational RAR	Improved RAR ⁴	Improved RAR*	
BIAS	-0.441	-0.322	-0.222	
RMSE	5.398	4.162	4.074	
RMSE	0.873	0.691	0.676	
CORR	0.478	0.569	0.586	

The root mean square errors(RMSEs) were reduced from 87.336 to 69.111% in improved RAR', and reduced to 67.595 in improved RAR" for this case(improvement results has deviation by sites).

Ground Validation Site

Site name	Site ID	Lat (°N)	Lon (°E)	Alt (m)
Jindo	JNI	34.471	126.328	499
Busan	PSN	35.115	129.001	547
Gosan	GSN	33.294	126.163	103
Seongsan	SSP	33.387	126.880	72
Baengnyeong	BRI	37.968	124.630	185
Myeonbong	MYN	36.179	128.997	1136
Gwanak	KWK	37.444	126.964	641
Gwangdeok	GDK	38.118	127.434	1061
Oseong	KSN	36.013	126.784	231
Gangneung	GNG	37.818	128.866	99
Yongin Test-bed	YIT	37.206	127.285	473
Biseul	BSL	35.694	128.535	1085
Sobaek	SBS	36.928	128.441	1408
Mohu	MHS	35.034	127.183	958
Seodae	SDS	36.225	127.543	922

KMA started to replace the radar network to S-band Dual polarization radar from 2013.

Black: Operated by KMA, Blue: Test-bed(KMA), Red: Operated by MoLIT